Zur Übersicht

Vortrag (20 Min., 5 Min. Diskussion, 5 Min. Raumwechsel)

Neutronentomographie zur Detektion von Wasserstoff in Zugproben

Mittwoch (18.09.2019)
15:00 - 15:30 Uhr Hamburg 2

Die wasserstoffunterstützte Schädigung von Komponenten und Bauteilen aus Stahl ist ein Phänomen, welches seit vielen Jahrzehnten bekannt ist und untersucht wird. Eine Vielzahl von Quellen (z.B. Schutzgas oder Feuchtigkeit beim Schweißen, Reinigung von Metallen in Säurebädern, galvanischer oder kathodischer Schutz) ermöglicht die Wasserstoffaufnahme in den Stahl. Der im Gitter gelöste oder an Wasserstoffhaftstellen (Versetzungen, Grenzflächen, Poren, etc.) getrappte Wasserstoff diffundiert aufgrund von Konzentrationsgradienten oder getrieben durch Spannungs- bzw. Dehnungsgradienten durch das vorliegende Gefüge, wo er in Kombination mit einwirkenden Beanspruchungen (äußere Last oder Eigenspannungen) eine lokale, signifikante Degradation der mechanisch-technologischen Eigenschaften bewirken kann.

Die dazu entwickelten und allgemein anerkannten Schädigungsmodelle gehen unter anderem von einem Einfluss des Wasserstoffs auf die Versetzungsentstehung und Versetzungsbeweglichkeit aus. Des Weiteren wird angenommen, dass Wasserstoff nicht nur durch Diffusion im Gitter transportiert wird, sondern auch an Versetzungen angehaftet ist und sich mit diesen im Falle plastischer Verformung mitbewegt.

Wasserstoff hat im Vergleich zu den meisten üblichen Legierungselementen von Stahl (Eisen, Chrom, Kohlenstoff) einen großen Wechselwirkungsquerschnitt für kalte und thermische Neutronen, was Neutronenradiographie und -tomographie zu geeigneten bildgebenden Verfahren zur lokalen Detektion von Wasserstoffakkumulationen in Stahl macht.

Elektrochemisch mit Wasserstoff beladene Zugproben aus supermartensitischem Stahl wurden vor und nach dem Zugversuch an der ANTARES beamline am FRM II polychromatisch radiographiert bzw. tomographiert. Die Bruchoberfläche der Probe wurde zusätzlich rasterelektronenmikroskopisch charakterisiert. Die Fraktographien der Bruchoberfläche in Verbindung mit den durch die Tomographie gewonnenen Informationen zu Wasserstoffansammlungen zeigen, dass nach dem Bruch auch in duktilen Versagensbereichen untypischerweise vermehrt Wasserstoff zu finden ist.

Sprecher/Referent:
Dipl.-Ing. Beate Pfretzschner
Bundesanstalt für Materialforschung und -prüfung (BAM)
Weitere Autoren/Referenten:
  • Dr. Axel Griesche
    Bundesanstalt für Materialforschung und -prüfung (BAM)